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Abstract 20 
 21 
Catch estimates from recreational fisheries are an important component of many fishery 22 
management plans. Estimates of recreational catch (in weight) on the U.S. West Coast are often 23 
derived as the product of catch in numbers of fish and average fish weights. When estimates of 24 
average fish weight are imprecise (e.g., due to small sample sizes), the resulting estimates of 25 
catch in weight can fluctuate and unnecessarily trigger or delay management actions. This and 26 
other challenges associated with average weight estimation are currently addressed through 27 
replication of data based on deterministic algorithms (‘borrowing rules’). These methods differ 28 
among states and do not present a viable method for variance estimation. In this study, we 29 
describe a model-based framework for estimation of average fish weights, with an application to 30 
the recreational groundfish fishery off Washington, U.S.A. The model-based framework 31 
identifies important sources of variability in mean weight, quantifies uncertainty in estimates, 32 
pools information to better inform strata with small sample sizes, predicts average weight for 33 
unsampled strata, and does not require data replication. We examine the effect of sample size on 34 
model-based estimates, and recommend propagation of uncertainty in average catch into 35 
estimates of recreational catch in weight. 36 
 37 
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1. Introduction 44 
 45 
Catch monitoring is an important element of fishery management plans around the world (FAO 46 
2020). When stocks are harvested by multiple fisheries, such as recreational and commercial 47 
sectors, catch estimates must be standardized across fisheries into common units (e.g., metric 48 
tons [mt]). In this way, total catch can be monitored against a target or limit (e.g., Annual Catch 49 
Limits, or ACLs, in the United States) (Methot et al. 2014). In waters off the U.S. West Coast 50 
(Washington, Oregon, and California), commercial landings of most species are recorded in units 51 
of weight. However, catch estimates for marine recreational fisheries are estimated in numbers of 52 
fish. To produce estimates of recreational catch in weight, the catch in numbers is multiplied by 53 
average fish weight in each stratum. Therefore, fish size data (weights and lengths) are a key 54 
component of catch monitoring efforts for these fisheries, but are also important for other aspects 55 
of fishery management in the region, including stock assessment. 56 
 57 
Estimation of average fish weights from recreational catch is in principle a very straightforward 58 
procedure. In practice, however, several issues commonly arise. When estimates of average fish 59 
weight are highly variable (e.g., due to small sample sizes), resulting estimates of total 60 
recreational catch in weight can fluctuate and unnecessarily trigger (or delay) management 61 
action, such as fishery closures. Several mechanisms can contribute to small sample sizes. 62 
Sampling of mixed-stock fisheries may provide adequate coverage for primary target species, but 63 
only sparsely sample the less common species. Regulations also play a role. When retention of 64 
certain species is prohibited, this reduces the number of fish available to land-based samplers. 65 
Changing budgets and sampling priorities are a factor. Also, efforts to manage at fine spatial or 66 
temporal scales can reduce the amount of data available to generate stable estimates. In some 67 
fisheries, many of these factors occur simultaneously, compounding the problem. A recent 68 
review of sampling programs for U.S. recreational fisheries recommended that “small area” 69 
estimation (SAE) procedures be investigated to reduce variability observed in design-based 70 
estimators (NAS 2017). Rao and Molina (2015) describe a “small area” as any domain or 71 
grouping (not limited to geographic areas) in which the number of available samples is 72 
inadequate to provide estimates with the desired level of precision. 73 
 74 
Another challenge is prediction of average weights for strata with no observations. This occurs 75 
due to a lack of sampling, or when a species is observed in the catch but a length or weight 76 
sample is not collected. In either case, some form of data imputation is needed (Rubin 1987, 77 
Gelman and Hill 2006). This process involves selection of an imputation model, as well as a 78 
method to characterize uncertainty. Estimation for strata with zero samples requires a model-79 
based approach (Pfeffermann 2013), and can be considered a special case of SAE. 80 
 81 
Currently, all three western states use ‘borrowing rules’ (or simply ‘borrowing’) to reduce 82 
variability in average weight estimates and/or to predict average weights for unobserved strata. 83 
Although details of this approach vary among states, it involves a deterministic algorithm that 84 
replicates (‘borrows’) data from observed strata when sample sizes do not meet a pre-specified 85 
threshold. These data are assumed to be representative of the sparsely-sampled or unsampled 86 
target stratum. Since data are replicated across strata, estimates of uncertainty are not clearly 87 
defined and are sometimes ignored (i.e., average weights are treated as a constant). Preferably, 88 
estimators of recreational catch in weight should account for uncertainty in both factors, catch in 89 



numbers and average weight (Goodman 1960). Estimates of uncertainty are especially important 90 
when data standards include precision thresholds, such as those recently established for 91 
recreational fishing surveys in the United States1. 92 
 93 
In this paper, we seek to address several of the above-mentioned issues using a model-based 94 
approach to estimate average fish weights. Specifically, we estimate average weights using 95 
hierarchical regression models (Gelman 2006). These models pool information across strata, 96 
‘borrowing strength’ to reduce variability in estimates for sparsely-sampled strata, without the 97 
need for data replication. For each species, we evaluate covariates used in the borrowing rules 98 
(year and month), but also examine spatial (port) effects and vessel characteristics. Posterior 99 
predictive distributions for average weight are used for data imputation in unobserved strata. Our 100 
model-based approach produces estimates of average weight with uncertainty for both sampled 101 
and unsampled strata. These can be combined with estimates of total catch (in numbers) to 102 
produce estimates of total catch in weight that reflect uncertainty in both catch and average 103 
weight. 104 
 105 
We apply our model-based method to marine recreational fishery data from Washington, USA. 106 
We compare model-based estimates of average weight to current estimates based on ‘borrowing 107 
rules’ for several groundfish species in the Washington recreational fishery. Species were chosen 108 
to include primary targets, as well as uncommon to rare components of the catch. Lastly, we use 109 
model selection to evaluate important sources of variability in average weight and to identify a 110 
model structure that has good predictive ability, a simple interpretation, and is easily 111 
implemented using freely available software. 112 
 113 
 114 
2. Methods 115 
 116 
2.1. Data and current estimation approach 117 
 118 
Washington Department of Fish and Wildlife (WDFW) collects fish length and weight data from 119 
the coastal groundfish sport fishery in waters off the coast of Washington, USA. These efforts, 120 
referred to as “biological sampling,” are independent of the sampling design for catch estimation. 121 
Biological sampling is conducted by two interrelated groups - the Ocean Sampling Program 122 
(OSP) and the Marine Fish Science (MFS) group (Davis and Wargo 2020). The OSP collects 123 
length data at all ports, and also collects weight data upon request. For the species examined in 124 
this study, OSP samples were available for the months of February through November, as fishing 125 
effort is greatly reduced in winter months. The OSP sample unit is a randomly selected boat trip, 126 
with four primary sites: Neah Bay, La Push, Westport, and Ilwaco. At the Westport site, the OSP 127 
samples fish landed by private boats and the MFS samples carcass lengths from charter boats. 128 
From March – September, the MFS also samples at Neah Bay and La Push to enhance data 129 
collections. The MFS does not sample sport landings at Ilwaco. Data from both sampling 130 
programs are combined to estimate average weight using WDFW’s borrowing rules. 131 
 132 

                                                           
1 NOAA Fisheries. (2020, December 4). NOAA Fisheries Establishes Recreational Fishing Survey and Data Standards. 
Retrieved from https://www.fisheries.noaa.gov/feature-story/noaa-fisheries-establishes-recreational-fishing-
survey-and-data-standards 



The WDFW borrowing algorithm uses measured fish weights, when available, or weights 133 
predicted from measured lengths using the best available weight-length relationship (see 134 
supplemental materials for additional details). To remove outliers, fish are excluded if they 135 
exceed a maximum length threshold for each species. The algorithm estimates average weights 136 
for each species as the arithmetic mean for any year/month stratum having at least 50 137 
observations. If fewer than 50 weights are available in a stratum, data from previous month(s) 138 
are added, going back one month at a time, until the 50-fish minimum requirement is either met 139 
or exceeded. If fewer than 50 weights are available across all sampled months, an average weight 140 
is assigned from a lookup table in the database. Length and weight data are not available for 141 
released fish, and released fish are assumed to have the same average weight as retained fish in 142 
the same stratum. An analysis of differences in weight between retained and released fish would 143 
require a change to WDFW’s current sampling design, and is beyond the scope of this analysis. 144 
See the supplementary materials for a more detailed description and flowchart of WDFW’s 145 
borrowing rules for average weight estimation. 146 
 147 
We examine data for eight species. These include Black Rockfish (Sebastes melanops) and 148 
Lingcod (Ophiodon elongates), both of which are primary targets of the recreational fishery. We 149 
also include species that are less commonly sampled, such as Canary Rockfish (S. pinniger) and 150 
Quillback Rockfish (S. maliger). These were chosen to represent ‘data-poor’ species for this time 151 
period, as they had smaller sample sizes and a greater number of strata with no observations. 152 
Other species in the study include China Rockfish (S. nebulosus), Copper Rockfish (S. caurinus), 153 
Cabezon (Scorpaenichthys marmoratus), and the Blue/Deacon Rockfish complex, a cryptic 154 
species pair (Sebastes mystinus and S. diaconus) that are not differentiated in the catch, but have 155 
generally similar life histories (Bizzarro et al. 2020). We refer to the Blue/Deacon species 156 
complex as “Blue Rockfish” for simplicity. 157 
 158 
WDFW’s biological samples and average weight estimates from the borrowing algorithm were 159 
obtained from the Recreational Fisheries Information Network (RecFIN; recfin.org). RecFIN is a 160 
repository of marine recreational fishing data for the states of Washington, Oregon, and 161 
California. In coordination with WDFW, RecFIN staff linked weight records and estimates of 162 
catch (in numbers) from the database to relevant covariates, created a custom view to simplify 163 
queries, and facilitated access to data in a format that could be directly imported for our models. 164 
All analyses in this study were conducted using the R programming language and environment 165 
(R Core Team, 2020). 166 
 167 
2.2. Model-based approach 168 
 169 
We estimate average fish weight using generalized linear models (GLM) and generalized linear 170 
mixed models (GLMM; Gelman 2006). These models offer a well-established framework for 171 
identifying important sources of variability (model selection) and evaluating model performance. 172 
They also allow us to estimate mean weight for both sampled and unsampled strata. We fit 173 
models to the same data used to implement WDFW’s borrowing rules. However, we use only the 174 
observed data in each stratum, and do not replicate data from earlier months or require a 175 
minimum number of samples per stratum. Similar to the borrowing algorithm, we include 176 
weights predicted from lengths when direct weight measurements are not available. Hierarchical 177 
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(mixed) models were fit using the ‘rstanarm’ and ‘lme4’ packages and GLMs were fit using the 178 
‘glm’ function in R (Goodrich et al. 2020, Bates et al. 2015, R Core Team 2020). 179 
 180 
We assume that fish weights (the response variables) are gamma distributed since the data are 181 
continuous, strictly positive, and have a variance that increases with the mean. We relate mean 182 
weight to the linear predictor via a log link function, and evaluate candidate models 183 
independently for each species (i.e., species is not a covariate in the linear predictor). 184 
 185 
Covariates considered during model selection included year, month, port of landing, and boat 186 
mode (private and charter). Port of landing and boat mode are not part of WDFW’s borrowing 187 
algorithm, but are strata used for catch estimation (in numbers). Therefore, we included them in 188 
the set of candidate models. Port of landing could affect average weight if fish near a particular 189 
port experienced differences in growth rate and/or exploitation history. Data from small, 190 
secondary ports were combined with the primary sites for the model. Specifically, samples from 191 
Chinook were combined with Ilwaco, and samples from Ocean Shores (OS) were combined with 192 
Westport. Boat modes could also have an effect on the average weight of landed fish. Charter 193 
boats, for example, may have access to more distant, less exploited reefs with larger fish. 194 
WDFW’s catch estimates are also stratified by catch area and trip type (WDFW 2017). These 195 
covariates were not included in the candidate set of models because they were not consistently 196 
available for weight observations due to differences in the sampling designs for biological data 197 
and catch estimation. All covariates were coded as categorical variables (‘factors’ in R). 198 
 199 
As noted earlier, challenges with estimation of average weight include highly variable estimates 200 
due to small sample sizes, and prediction for unobserved strata. In addition to models with only 201 
‘fixed’ effects (single-level models), we evaluate models that estimate group-level parameters 202 
using information within the group and across groups (i.e., hierarchical models, ‘partial pooling,’ 203 
or ‘random’ effects). This is commonly referred to as borrowing strength or shrinkage (Gelman 204 
and Hill 2006). In our hierarchical models, the average weight estimate for a group is ‘shrunk’ 205 
toward the mean across groups. The amount of shrinkage depends on the amount of information 206 
within the group itself, and predictions for unobserved groups reflect uncertainty among groups. 207 
 208 
All linear predictors were coded using the default ‘treatment’ contrasts for the design matrices. 209 
Diffuse priors were selected for regression coefficients in the Bayesian models using the 210 
‘rstanarm’ package in R. Specifically, normal priors with a zero mean and standard deviation 211 
(SD) of 3 kg for the intercept, and normal priors with a zero mean and SD=1 kg for the offsets. 212 
An exponential prior with rate parameter equal to 0.25 (mean = 4) was used for the shape 213 
parameter of the gamma distribution. Further details about prior specification in ‘rstanarm’ are 214 
described by Goodrich et al. (2020). 215 
 216 
We initially fit models for each species using maximum likelihood (for GLMs) or restricted 217 
maximum likelihood for GLMMs (using the ‘glmer’ function in ‘lme4’). This approach reduces 218 
the time needed to compare models as Bayesian estimation can be slow for larger data sets. It 219 
also provides an opportunity to compare parameter estimates between models to confirm that our 220 
choice of prior distributions do not significantly influence the results. We use Akaike’s 221 
Information Criterion (AIC) to narrow the set of candidate models based on the (restricted) 222 



maximum likelihood fits, then fit Bayesian hierarchical models using ‘rstanarm’ for final model 223 
diagnostics and inference. 224 
 225 
Convergence diagnostics for optimization algorithms included monitoring of convergence, 226 
defined as gradients less than 0.005. Evidence of convergence for Bayesian models was assessed 227 
using Gelman and Rubin’s (1992) diagnostic (“𝑅𝑅�”) as reported by ‘rstanarm’ output, for each 228 
parameter. Models with 𝑅𝑅� values less than 1.1 for all parameters were accepted. Bayesian 229 
models were also monitored for divergent transitions in the Hamiltonian Monte Carlo (HMC) 230 
algorithm and maximum tree depth of the No-U-Turn-Sampler (Monnahan et al. 2017). 231 
 232 
Once a model is selected and passes the above-mentioned convergence diagnostics, we evaluate 233 
model performance. For this, we rely on posterior predictive checks (Gabry et al. 2019), whereby 234 
the fitted model is used to simulate 10,000 replicate data sets that are then compared to the 235 
observed data set. We use a combination of graphical and quantitative checks. Examples of 236 
graphical checks include histograms comparing observations or group-level means to predictive 237 
distributions. Quantitative checks include measures of predictive coverage, comparing quantiles 238 
of the observed weights to quantiles of the posterior predictive distributions. 239 
 240 
After selecting a model for average weight estimation, we compare estimates of mean weight 241 
derived from the current borrowing algorithm (i.e., with data replication) to estimates from the 242 
model-based approach. For each species, we plot group-level posterior means (i.e., every 243 
observed combination of year/month/port/mode) from the model, and point estimates from the 244 
borrowing algorithm, against arithmetic means of the observed weights. 245 
 246 
Finally, we illustrate how uncertainty in estimates of average weight relate to sample size. For 247 
each species, we plot percent standard error of the posterior mean as a function of sample size. 248 
This analysis can be used to inform target sampling rates and to help optimize allocation of 249 
sampling effort. 250 
 251 
 252 
3. Results 253 
 254 
The eight species we examined differed in average weight (grand means), ranging from less than 255 
1 kg (blue and China rockfishes) to over 3 kg for lingcod (Table 1). Two primary targets of the 256 
fishery (black rockfish and lingcod) had the largest total sample sizes (N=19,359 and N=10,569, 257 
respectively). Canary rockfish had the smallest sample size (N=3,495), primarily due to 258 
regulatory limits over the observed time period. Sample sizes for other species were in the range 259 
of 4,000 – 5,000 weights. The median number of samples per observed stratum ranged from 10 260 
for quillback rockfish to 49 for black rockfish (Table 1). 261 
 262 
Samples were collected over 8 years (2010-2017) and across 4 port groups, 2 boat modes, and 7-263 
10 months depending on the species. Monthly coverage varied across years within each species. 264 
During the primary months of March through October, the proportion of potential strata (512 265 
possible combinations of year/month/port/mode) having at least one weight sample varied from 266 
13% coverage for canary rockfish to 61% coverage for black rockfish. In practice, however, 267 
catch does not occur in all combinations of year, month, port, and mode. So, while the proportion 268 



of landed strata with weight samples would be larger, the model is still able to generate 269 
predictions for all strata (observed or unobserved). 270 
 271 
 272 
Table 1. Summary of WDFW fish weight data by species, 2010-2017. Grand mean weight is the arithmetic 273 
mean across all samples. The proportion of strata sampled is based on 512 year/month/port/mode 274 
combinations having at least one sample, excluding winter months (November-February). 275 
 276 

 
Species 

Average Weight 
(grand mean, kg) 

Total Sample 
Size (N) 

Median N per 
sampled stratum 

Proportion of 
strata sampled 

Black Rockfish 1.19 19,359 49 0.61 
Blue Rockfish 0.96 4,165 16 0.25 
Cabezon 2.81 4,186 15 0.40 
Canary Rockfish 1.01 3,495 26 0.13 
China Rockfish 0.94 4,547 12 0.31 
Copper Rockfish 1.61 3,900 12 0.25 
Lingcod 3.60 10,569 24 0.60 
Quillback Rockfish 1.45 4,467 10 0.31 

 277 
 278 
For this study, we evaluated 14 candidate models for each species (Table 2). We began with 279 
GLMs (models 1-8), but due to the sparse nature of the data, these were limited in terms of 280 
estimable fixed-effect interaction terms. We also considered a set of GLMMs that all included a 281 
4-way interaction term as a random effect (models 9-14; Table 2). In the GLMMs, all 282 
combinations of year/month/port/mode are estimated as deviations sharing a common 283 
distribution. This simple random effects structure was chosen as it is highly flexible, easy to 284 
interpret, allows for ‘partial pooling’ of information across strata, and facilitates prediction for 285 
unobserved strata. 286 
 287 
Based on Delta-AIC (AIC-min(AIC); calculated for each species separately), we found that all 288 
the GLMMs showed significant improvements in fit relative to the GLMs (Table 2). This is not 289 
surprising given the increase in model complexity associated with the 4-way interaction, and the 290 
fact that the penalty term in AIC only counts the random effect as 1 extra parameter (the 291 
hierarchical variance parameter). However, the purpose of using AIC in this study was to narrow 292 
the set of candidate models prior to evaluating model performance. It seems unlikely that a single 293 
model structure could be selected as the ‘best’ model for all species following any criterion, 294 
given differences in biology and fishery characteristics over time and among ports. However, 295 
one model may provide adequate performance across a wide range of species. 296 
 297 
The GLMMs in the candidate set differ in terms of their fixed effect structures (models 9-14, 298 
Table 2). The simplest GLMM (model 9) estimates a single intercept parameter (population 299 
mean) as a fixed effect and performed relatively well for many species. Model 10 estimates 300 
independent means for each year, along with stratum-specific deviations for each 301 
year/month/port/mode that are drawn from a common distribution. Models 11 and 12 are similar, 302 
with port group and boat mode replacing the year-specific estimates, respectively. Models 13 and 303 
14 assume additive fixed effects for port/mode and year/port/mode, again with stratum-level 304 
deviations estimated via the random effect term. 305 
 306 



Table 2. Comparison of GLMs (models 1-8) and GLMMs (models 9-14) based on Delta-AIC (AIC – min(AIC)), by species. Degrees of freedom = d.f. 307 
Codes for categorical covariates are yr = year, pt = port group, md = boat mode, and mo = month. Models (GLMMs) with a random intercept (a 4-way 308 
interaction term) are indicated by “(1 | yr:mo:pt:md),” following notation used in the ‘lme4’ and ‘rstanarm’ packages for R. * indicates failed 309 
convergence of the optimizer in glmer. 310 
 311 

   Species 
 

# 
 
Linear Predictor 

 
d.f. 

Black 
Rockfish 

Blue 
Rockfish 

 
Cabezon 

Canary 
Rockfish 

China 
Rockfish 

Copper 
Rockfish 

 
Lingcod 

Quillback 
Rockfish 

Average 
∆-AIC 

1 yr 9 2384 1548 1454 893 2175 633 2106 1431 1578 
2 pt 5 2215 1622 1049 1208 658 693 2010 1127 1323 
3 md 3 2345 1792 1629 1286 2123 730 2245 1159 1664 
4 yr + pt 12 2152 1409 863 877 610 589 1903 1026 1178 
5 yr + md 10 2311 1514 1452 893 2001 624 2108 1066 1496 
6 pt + md 6 2163 1612 1038 1202 658 692 2012 1086 1308 
7 yr + pt + md 13 2118 1389 832 864 610 564 1904 991 1159 
8 yr + pt + md + pt:md 16 2001 1389 829 837 493 490 1860 912 1101 
9 Intercept + (1 | yr:mo:pt:md) 3 5 0* 24 0 35 5 14* 22 13 
10 yr + (1 | yr:mo:pt:md) 10 5 2 29 11* 43 7 16 28 18 
11 pt + (1 | yr:mo:pt:md) 6 1 1 1* 3 0 7 0 1 2 
12 md + (1 | yr:mo:pt:md) 4 4 2* 25 1 32 5 13 16 12 
13 pt + md + (1 | yr:mo:pt:md) 7 1 3 0 5 1 1 0 0 1 
14 yr + pt + md + (1 | yr:mo:pt:md) 14* 0* 7* 1* 17* 4* 0* 1* 3* 4 

 312 
 313 



Although the simplest GLMM (#9) was the ‘best’ among candidate models for canary rockfish, 314 
the optimization in ‘glmer’ failed to converge (gradient > 0.005) when the same model was fit to 315 
data for blue rockfish and lingcod (Table 2). In fact, of the 48 models fit using ‘glmer,’ 13 did 316 
not converge. Eight of these cases were for one model (#14), which didn’t converge for any 317 
species and was not considered further. The remaining 5 cases that did not converge did not 318 
show a consistent pattern (Table 2). Convergence issues with ‘glmer’ are often not an issue when 319 
using a Bayesian framework (see discussion for details). Since we used Bayesian models for 320 
final inference, and the converged GLMMs consistently outperformed the GLMs, we moved 321 
forward with performance testing to determine whether the ‘best’ model in the set was a good 322 
model. 323 
 324 
One GLMM (model 13, Table 2) had the lowest average AIC, and also converged for all species. 325 
This model specifies additive fixed effects for port group and boat mode, deviations and variance 326 
of the random effect term, and a shape (dispersion) parameter for the assumed gamma 327 
distribution. We selected model 13 for final inference, performance evaluation, and comparison 328 
to the existing borrowing algorithm. 329 
 330 
Bayesian fits with model 13 did not show any evidence of lack of convergence, with 𝑅𝑅� < 1.1 for 331 
all parameters, no divergent transitions, and maximum tree depths <15 (the default in 332 
‘rstanarm’), for all eight species in our study. Posterior predictive checks suggest that the models 333 
were able to adequately reproduce patterns in the observed data (Figures 1-6 illustrate results for 334 
black rockfish; see supplementary materials for results from other species). Specifically, 335 
marginal means by year, month, port, and mode were calculated for each of 10,000 simulated 336 
data sets from the model, and compared to marginal means from the observed data set. 337 
 338 
Marginal means by year (Figure 1) were consistent with observed means, even though year was 339 
not included as a fixed effect in the model. Since many months may have few or no samples, we 340 
also model month as part of the 4-way interaction term. However, monthly marginal means of 341 
the posterior predictive distribution show that the model is capable of capturing seasonal 342 
variability (Figure 2). The model also predicts greater uncertainty for months with fewer samples 343 
(e.g., February and November) compared to peak months during the summer (Figure 2). This 344 
demonstrates that deviations in the random effect are able to capture annual and seasonal 345 
changes in mean weight, and reproduce the expected relative changes in uncertainty. 346 
 347 
Unlike the borrowing algorithm, model 13 accounts for differences in mean weight associated 348 
with port group (spatial effects) and boat mode. Black rockfish caught in the Ilwaco/Chinook 349 
port group had a mean weight of roughly 1.28 kg, while average weight in Neah Bay was 1.13 350 
kg (Figure 3). Charter boats, on average, caught larger black rockfish than private boats, and this 351 
difference was also captured by the model (Figure 4).  352 
 353 
Model performance is often best visualized by comparing observed and predicted values. Figure 354 
5 reveals that, relative to the borrowing algorithm, predictions from the model-based approach 355 
are less concentrated around the population mean (roughly 1.2 kg, Table 1) and more closely 356 
match the observed weights. This is especially true for observed values below 1 kg and above 1.4 357 
kg. This improvement in fit to the observed values when using the model-based approach also 358 
holds for the other species we examined (see Supplemental Materials). 359 



 360 
Another useful metric of model performance is a comparison of observed data distributions to 361 
simulated data sets from the model. If simulated data are consistent with the observed data, then 362 
95% of observations should fall within the 95% central interval, and likewise 50% of 363 
observations should fall within a 50% central interval. Using model 13, we found that the 95% 364 
highest density intervals for the posterior predictive distributions contained almost exactly 95% 365 
of the observations (Table 3). Across species, the 50% highest density interval contained a 366 
slightly larger fraction of the data (51-60%; Table 3). This suggests that the data distributions are 367 
slightly more concentrated around their central tendencies than the predictive densities from the 368 
model. 369 
 370 
Table 3. Fraction of observations, by species, that fall within the 50 and 95 percent highest density intervals 371 
from the posterior predictive distribution given model 13. PPDs are based on 10,000 simulated data sets. 372 
 373 

Species 50% 95% 
Black Rockfish 0.533 0.951 
Blue Rockfish 0.576 0.947 
Cabezon 0.550 0.948 
Canary Rockfish 0.599 0.954 
China Rockfish 0.556 0.954 
Copper Rockfish 0.509 0.961 
Lingcod 0.585 0.942 
Quillback Rockfish 0.592 0.949 

 374 
As mentioned earlier, one of the motivations for using borrowing algorithms is to reduce 375 
variability in mean weights that results from small sample sizes. Our model-based approach 376 
achieves this through ‘partial pooling’ of information among the coefficients of the random 377 
effects term. In this framework, stratum-level estimates are ‘shrunken’ toward the population 378 
mean by an amount that reflects the amount of information in the available data (Figure 6, black 379 
open circles). Estimates from well-informed strata will change very little, while estimates from 380 
poorly-informed strata will shrink towards the population mean. The amount of shrinkage 381 
depends on the variance of the data as well as the distance from the population mean. For a 382 
primary target species like black rockfish, many strata have large sample sizes. As a result, 383 
posterior means from the model are largely consistent with the observed, stratum-level means 384 
(Figure 6, black open circles). However, when estimated means are very large (e.g., >1.5 kg) or 385 
very small (e.g., <0.75 kg), the shrinkage effect becomes much more noticeable in the model-386 
based estimates. 387 
 388 
Estimates from the borrowing algorithm are less variable than the stratum-level means (Figure 6, 389 
grey solid circles). However, unlike the model-based approach, estimates of mean weight from 390 
the borrowing algorithm do not reflect information in the available data. The relationship 391 
between the data in a stratum and the estimates from the algorithm is very weak. In fact, some 392 
estimates from the borrowing algorithm appear to be ‘shrinking’ in the opposite direction one 393 
would expect (away from the population mean). Since model 13 includes fixed effects for port 394 
group and boat mode, the random effects are actually estimated as deviations from the 8 possible 395 
combinations of port & mode. In that sense, the dashed lines in Figure 5 do not exactly match the 396 
population means in the model (observant readers will notice that a single estimate from the 397 



model appears to ‘shrink’ in the wrong direction). However, we show only one horizontal and 398 
one vertical reference line representing the population grand mean for the sake of clarity. 399 
Shrinkage plots for other species, similar to Figure 5, are available with the supplemental 400 
materials. 401 
 402 
Given that data are replicated through time, it is not clear how to calculate variance estimates for 403 
the current WDFW borrowing rules. As noted earlier, uncertainty in average weight is needed in 404 
order to properly estimate uncertainty for total catch in weight. We have shown that estimates of 405 
uncertainty from our model-based approach reflect uncertainty in the data for these eight species 406 
(Table 3). Another benefit of quantifying uncertainty in mean weight is understanding how data 407 
collection affects precision of the estimates. Percent standard errors of the model-based average 408 
weight estimates decrease with increasing sample sizes, as one would expect (Figure 7).  Sample 409 
sizes of 50 or more per stratum result in PSEs less than 7% for all species, and sample sizes of 410 
100 or greater consistently produce PSEs less than 5%. 411 
 412 
Small sample sizes (e.g., <25 fish), however, can have PSEs between 10-20%, which may 413 
influence estimates of uncertainty for total catch in weight. Predictions for unsampled strata will 414 
have even larger PSEs, but in practice most catch estimates used for management are an 415 
aggregate across multiple strata (reducing PSEs for the aggregate catch). 416 
 417 
 418 
4. Discussion 419 
 420 
Information about average fish weight from recreational fisheries is needed to meet the 421 
requirement for total coast-wide harvest and mortality in federally-managed U.S. fish stocks. 422 
Catch estimates from all three West Coast states (Washington, Oregon, and California) are 423 
produced in numbers of fish, along with estimates of uncertainty. We propose a model-based 424 
approach for estimating mean weight conditional on several other variables (year, month, port, 425 
and mode). The same model is used to generate estimates for observed strata and predictive 426 
distributions for unsampled strata, both with uncertainty. We show that the model-based 427 
estimates are better able to reproduce the observed data than the current borrowing algorithm, 428 
which ignores uncertainty in average weight. The model-based estimates can be combined with 429 
existing estimates of catch in numbers to produce estimates of total catch in weight that reflect 430 
uncertainty in both average weight and catch in numbers (Goodman 1960). This propagation of 431 
uncertainty is not possible using the deterministic borrowing algorithm. 432 
 433 
Although we illustrate our method with data from Washington State, this study provides a 434 
general framework for average weight estimation that warrants consideration by other agencies 435 
that employ borrowing rules. Among U.S. West Coast recreational fisheries, deterministic 436 
algorithms differ by state, and none of the algorithms quantify uncertainty. This study describes a 437 
consistent framework that does not require data replication, identifies important sources of 438 
variability in mean weight, quantifies uncertainty, pools information to better inform strata with 439 
small sample sizes, imputes average weight for unsampled strata, and helps inform survey 440 
design. The model-based approach also appears to work well across a range of species, from 441 
‘data-rich’ to ‘data-poor.’ 442 
 443 



Variability in mean weight estimates, which can arise due to small sample sizes, is addressed in 444 
our method through partial pooling of information (Gelman and Hill 2006). The resulting 445 
‘shrinkage’ of imprecise estimates toward population means reduces the influence of erratic 446 
average weights on estimates of catch in biomass. The message in Figure 5 is two-fold. First, the 447 
model-based estimates of mean weight are more consistent with observed means, compared to 448 
the borrowing algorithm. Second, and equally important, is the fact that the model only shrinks 449 
the estimates as far as the population mean, unlike the borrowing algorithm which appears to 450 
'shrink' estimates in the wrong direction. Another advantage of partial pooling is that variance of 451 
the random effects can be propagated in predictions for unsampled strata. 452 
 453 
SAE using hierarchical (generalized linear mixed-effects) models has a well-established 454 
theoretical basis (Ghosh and Rao 1994; Schaible 1996; Pfeffermann 2013; Rao and Molina 455 
2015), but to our knowledge has not been proposed for estimation of average weights for 456 
recreational fisheries. As noted by Schaible (1996), small area (“indirect”) estimators are often 457 
only considered after a sampling design is developed and implemented. Future research could 458 
examine how the use of SAE methods, such as the one we propose, interact with design-based, 459 
direct estimation methods and potentially influence the design of fishery surveys in general. 460 
 461 
Advantages of the model-based approach also include a well-established framework for model 462 
selection. We use AIC to illustrate this approach, but other information criteria such as the 463 
Widely-Applicable Information Criterion (WAIC) and Leave-One-Out Information Criterion 464 
(LOOIC) are reasonable alternatives (Vehtari et al. 2017). These methods have the advantage of 465 
not requiring a strict definition of model dimension for the penalty term. Although AIC treats the 466 
random effect term in our models as a single parameter, the use of posterior predictive checks 467 
provides a means to ensure that the ‘best’ model in the candidate set is also a good model. While 468 
we chose a single model that performs well across a wide range of species, another option would 469 
be to tailor models to specific data sets depending on the unique characteristics of a species 470 
and/or fishery. For example, canary rockfish was declared overfished in 2000 and rebuilt in 2016 471 
(PFMC 2018). Due to limited landings during that time, a simple model for average weight may 472 
be warranted, while a more complex model may be supported in subsequent years with larger 473 
sample sizes. 474 
 475 
We encountered issues with convergence for some GLMMs that were fit using the glmer 476 
package in R. These models were not used for final inference, but the speed of the optimization 477 
algorithm in glmer is useful for rapid evaluation of multiple models during the model selection 478 
process. With the exception of model 14 (Table 2), failed convergence was uncommon and could 479 
potentially be resolved through modification of settings in the optimization algorithm. Advice on 480 
resolving these issues is beyond the scope of this paper, but often includes the suggestion to 481 
implement a Bayesian model. We did not encounter convergence issues for these data sets when 482 
using rstanarm. This is due in part to specification of “weakly informative” priors that have 483 
negligible impacts on results but prevent estimation algorithms from ‘getting lost’ in 484 
unreasonable regions of the parameter space (Lemoine 2019). 485 
 486 
Alternatives to the model-based approach include modification of survey designs to estimate 487 
catch in biomass as well as catch in numbers. Essentially, estimation of catch rates in biomass 488 
would eliminate the need for separate estimates of catch in numbers and average weight. 489 



Modification to existing survey designs can be expensive, however, and benefits may not 490 
warrant the costs. This approach would also only affect future estimates, and average weight 491 
estimates would still be required to convert historical estimates of catch from numbers to weight. 492 
Hot and cold deck imputation methods are another option for dealing with missing data 493 
(Andridge and Little 2017). The model-based approach offers a single solution to both estimation 494 
and imputation, with associated variance estimates, but evaluation of performance and careful 495 
examination for evidence of model misspecification is key. We find that posterior predictive 496 
checks are a powerful tool for evaluating model performance and diagnosing model 497 
misspecification (Gelman and Hill 2006). 498 
 499 
Our analysis of percent standard errors as a function of sample size can be used to inform 500 
allocation of sampling effort across strata. If PSEs below 5% are adequate for catch monitoring, 501 
then sampling effort beyond 100 fish per stratum could be re-allocated to address other priorities. 502 
Model-based estimates of uncertainty may be less than corresponding design-based estimates 503 
due to the partial pooling of information, but this bias-variance tradeoff is by design. Since the 504 
borrowing algorithm in this study does not provide an estimate of variance, we find the model-505 
based approach to be a significant improvement, both in terms of point estimates and variance 506 
estimation. 507 
 508 
Small changes in mean weight can have important implications for catch monitoring and in-509 
season management of primary target species (e.g., black rockfish; H. Hall, WDFW, pers. 510 
comm.). Large fluctuations in mean weight due to small sample sizes can produce similar 511 
difficulties when they occur for infrequently landed, but constraining species within a mixed-512 
stock fishery (i.e., overfished stocks). The use of borrowing algorithms for average weight 513 
estimation is not unique to the U.S. west coast. Similar algorithms have been adopted in the 514 
southeast United States (Matter and Turner, 2010; Matter and Rios, 2013). These methods often 515 
follow a sequence of increasing aggregation to meet minimum sample sizes, but lack detailed 516 
analysis of whether alternative algorithms would better reproduce the observed average weights. 517 
Similar to the WDFW example, these algorithms do not provide variance estimates (Southeast 518 
Data Assessment and Review, 2016). In these respects, our proposed framework provides a way 519 
forward. 520 
 521 
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Figure captions for Dick et al. 
 
 
Figure 1. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by year 
(histograms) for black rockfish, relative to the marginal mean of the data (vertical line). PPDs are 
based on 10,000 simulated data sets from model 13. 
 
 
Figure 2. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by month 
(histograms; February – November) for black rockfish, relative to the marginal mean of the data 
(vertical line). PPDs are based on 10,000 simulated data sets from model 13. 
 
 
Figure 3. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by port 
group (histograms) for black rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
 
 
Figure 4. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by boat 
mode (histograms) for black rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
 
 
Figure 5. Observed weights [kg] of black rockfish (n=19,359) versus the mean of the posterior 
predictive distributions (upper panel) and the mean from the borrowing algorithm (lower panel). 
Solid line is the 1:1 line for reference. 
 
 
Figure 6. Estimated posterior means [kg] from model 13 (black open circles) and estimates from 
the borrowing algorithm (grey solid circles) versus observed arithmetic means for black rockfish. 
Each point represents a single year/month/port/mode combination (316 observed strata). 
Horizontal and vertical dashed lines are the arithmetic mean weight across all observations 
(grand mean). Solid line is the line of equality (1:1). 
 
 
[Figure 7 in color, online only] 
Figure 7. Percent standard error (PSE) of the posterior mean by stratum (year/month/port/mode), 
as a function of sample size and species. 
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Supplementary Materials for Dick et al. (“Model-Based Estimation of Average Weights 
from Recreational Fisheries”) 
 
The Washington average weight procedure does not calculate separate estimates of average 
weight for retained and released fish, thus for a given stratification, values of retained and 
released average weight will be equal.  The procedure begins by calculating an imputed weight 
for each individual Washington sample where a length is provided, but no corresponding weight.  
The equation used to calculate imputed weight is: 
 

        𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤ℎ𝑖𝑖 =  𝑎𝑎 ×  𝑙𝑙𝑖𝑖𝑙𝑙𝑤𝑤𝑖𝑖ℎ𝑏𝑏               ( 1 ) 

 
Where a and b are the species-specific length-weight parameters and length is the length of the 
sampled fish measured in mm.  Records where the length of the sampled fish exceed a stored 
maximum length threshold are excluded by the procedure and thus, not used in the average 
weight calculation.  For each species, the imputed and measured weights are summed along with 
a count of the number of weight samples for each year-month stratification.  These totals are 
used to calculate an estimated average weight for each processing-month.  The degree of 
stratification employed in the calculation is dependent upon the number of available weight 
samples at each stratum level (Table S1, Figure S1).  For each aggregation level (hereafter “agg 
level”), the procedure requires ≥ 50 samples to generate an average weight for a given species.  
The Washington procedure begins at agg level 7 and assigns an average weight to each year, 
month, agency, and species stratum.  The average weight computation begins with the 
processing-month and works backwards monthly through time, counting samples and stopping 
on the month where the sample count reaches ≥ 50 for each given species. Using those samples, 
an average weight is calculated for the current processing-month.  If the 50 sample threshold is 
not reached at agg level 7, and a fixed weight exists for the respective species and current 
processing-year, the average weight is assigned from the fixed weight table (agg level 7.1).  If an 
average weight from the fixed weight table is not available for the current processing-year, the 
procedure selects the average weight from the fixed weight table for the most recent available 
year for the respective species to assign to the processing-month (agg level 7.2).  If an average 
weight does not exist in the fixed weight table for a given species, then an average weight is 
calculated using Washington sample data from all available years (agg level 14). 
 
 
Table S1.  Levels of aggregation for average weight calculation, as defined for WDFW 
borrowing rules. Source: RecFIN 2020. 
 

 
 
 

Agg 
Level

Agency Year Month Species Agency Subregion Port
Trip
Type

Mode Notes

7 WA x x - Requires at least 50 samples to calculate average weight
- No date limit on collection of past records to calculate average weight

7.1 WA x x x - Average weight value from fixed weight table for processing year

7.2 WA x x - Most recent average weight value from fixed weight table

14 WA x x - Average weight calculated using retained samples from WA for all years
- No date limit on collection of past records to calculate average weight
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Figure S1.  Flowchart of WDFW borrowing rules. Source: RecFIN 2020. 
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samples needed to meet ≥ 
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an average weight
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average weights calculated 
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calculation of average 
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Within stratification
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Average weight calculated using WA sample 
data of retained fish for all years.  Assigned to 
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Results for Blue Rockfish 
 

 
Figure S2. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by year 
(histograms) for blue rockfish, relative to the marginal mean of the data (vertical line). PPDs are 
based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S3. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by month 
(histograms) for blue rockfish, relative to the marginal mean of the data (vertical line). PPDs are 
based on 10,000 simulated data sets from model 13. 
  



4 
 

 
Figure S4. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by port 
group (histograms) for blue rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S5. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by boat 
mode (histograms) for blue rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
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Figure S6. Estimated posterior mean weight [kg] from model 13 (black open circles) and 
estimates from the borrowing algorithm (grey solid circles) versus observed arithmetic means for 
blue rockfish. Each point represents a single year/month/port/mode combination (127 observed 
strata). Horizontal and vertical dashed lines are the arithmetic mean weight across all 
observations (grand mean). Solid line is the line of equality (1:1). 
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Figure S7. Comparison of observed weights [kg] for blue rockfish to predicted mean weights 
from model 13 (upper panel) and estimates from the borrowing algorithm (lower panel). Solid 
black lines are 1:1 for reference. 
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Results for Cabezon 
 

 
Figure S8. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by year 
(histograms) for cabezon, relative to the marginal mean of the data (vertical line). PPDs are 
based on 10,000 simulated data sets from model 13. 
 
 
 

 
Figure S9. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by month 
(histograms) for cabezon, relative to the marginal mean of the data (vertical line). PPDs are 
based on 10,000 simulated data sets from model 13. 
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Figure S10. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by port 
group (histograms) for cabezon, relative to the marginal mean of the data (vertical line). PPDs 
are based on 10,000 simulated data sets from model 13. 
 
 
 

 
Figure S11. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by boat 
mode (histograms) for cabezon, relative to the marginal mean of the data (vertical line). PPDs 
are based on 10,000 simulated data sets from model 13. 
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Figure S12. Estimated posterior mean weight [kg] from model 13 (black open circles) and 
estimates from the borrowing algorithm (grey solid circles) versus observed arithmetic means for 
cabezon. Each point represents a single year/month/port/mode combination (206 observed 
strata). Horizontal and vertical dashed lines are the arithmetic mean weight across all 
observations (grand mean). Solid line is the line of equality (1:1). 
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Figure S13. Comparison of observed weights [kg] for cabezon to predicted mean weights from 
model 13 (upper panel) and estimates from the borrowing algorithm (lower panel). Solid black 
lines are 1:1 for reference. 
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Results for Canary Rockfish 
 

 
Figure S14. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by year 
(histograms) for canary rockfish, relative to the marginal mean of the data (vertical line). PPDs 
are based on 10,000 simulated data sets from model 13. 
 
 
 

 
Figure S15. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by month 
(histograms) for canary rockfish, relative to the marginal mean of the data (vertical line). PPDs 
are based on 10,000 simulated data sets from model 13. 
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Figure S16. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by port 
group (histograms) for canary rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S17. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by boat 
mode (histograms) for canary rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
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Figure S18. Estimated posterior means from model 13 (black open circles) and estimates from 
the borrowing algorithm (grey solid circles) versus observed arithmetic means for canary 
rockfish. Each point represents a single year/month/port/mode combination (56 observed strata). 
Horizontal and vertical dashed lines are the arithmetic mean weight across all observations 
(grand mean). Solid line is the line of equality (1:1). 
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Figure S19. Comparison of observed weights [kg] for canary rockfish to predicted mean weights 
from model 13 (upper panel) and estimates from the borrowing algorithm (lower panel). Solid 
black lines are 1:1 for reference. 
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Results for China Rockfish 
 

 
Figure S20. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by year 
(histograms) for China rockfish, relative to the marginal mean of the data (vertical line). PPDs 
are based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S21. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by month 
(histograms) for China rockfish, relative to the marginal mean of the data (vertical line). PPDs 
are based on 10,000 simulated data sets from model 13. 
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Figure S22. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by port 
group (histograms) for China rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S23. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by boat 
mode (histograms) for China rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
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Figure S24. Estimated posterior means [kg] from model 13 (black open circles) and estimates 
from the borrowing algorithm (grey solid circles) versus observed arithmetic means for China 
rockfish. Each point represents a single year/month/port/mode combination (157 observed 
strata). Horizontal and vertical dashed lines are the arithmetic mean weight across all 
observations (grand mean). Solid line is the line of equality (1:1). 
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Figure S25. Comparison of observed weights [kg] for China rockfish to predicted mean weights 
from model 13 (upper panel) and estimates from the borrowing algorithm (lower panel). Solid 
black lines are 1:1 for reference. 
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Results for Copper Rockfish 
 

 
Figure S26. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by year 
(histograms) for copper rockfish, relative to the marginal mean of the data (vertical line). PPDs 
are based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S27. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by month 
(histograms) for copper rockfish, relative to the marginal mean of the data (vertical line). PPDs 
are based on 10,000 simulated data sets from model 13. 
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Figure S28. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by port 
group (histograms) for copper rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S29. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by boat 
mode (histograms) for copper rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
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Figure S30. Estimated posterior means [kg] from model 13 (black open circles) and estimates 
from the borrowing algorithm (grey solid circles) versus observed arithmetic means for copper 
rockfish. Each point represents a single year/month/port/mode combination (130 observed 
strata). Horizontal and vertical dashed lines are the arithmetic mean weight across all 
observations (grand mean). Solid line is the line of equality (1:1). 
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Figure S31. Comparison of observed weights [kg] for copper rockfish to predicted mean weights 
from model 13 (upper panel) and estimates from the borrowing algorithm (lower panel). Solid 
black lines are 1:1 for reference. 
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Results for Lingcod 
 

 
Figure S32. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by year 
(histograms) for lingcod, relative to the marginal mean of the data (vertical line). PPDs are based 
on 10,000 simulated data sets from model 13. 
 
 

 
Figure S33. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by month 
(histograms) for lingcod, relative to the marginal mean of the data (vertical line). PPDs are based 
on 10,000 simulated data sets from model 13. 
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Figure S34. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by port 
group (histograms) for lingcod, relative to the marginal mean of the data (vertical line). PPDs are 
based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S35. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by boat 
mode (histograms) for lingcod, relative to the marginal mean of the data (vertical line). PPDs are 
based on 10,000 simulated data sets from model 13. 
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Figure S36. Estimated posterior means [kg] from model 13 (black open circles) and estimates 
from the borrowing algorithm (grey solid circles) versus observed arithmetic means for lingcod. 
Each point represents a single year/month/port/mode combination (306 observed strata). 
Horizontal and vertical dashed lines are the arithmetic mean weight across all observations 
(grand mean). Solid line is the line of equality (1:1). 
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Figure S37. Comparison of observed weights [kg] for lingcod to predicted mean weights from 
model 13 (upper panel) and estimates from the borrowing algorithm (lower panel). Solid black 
lines are 1:1 for reference. 
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Results for Quillback Rockfish 
 

 
Figure S38. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by year 
(histograms) for quillback rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S39. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by month 
(histograms) for quillback rockfish, relative to the marginal mean of the data (vertical line). 
PPDs are based on 10,000 simulated data sets from model 13. 
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Figure S40. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by port 
group (histograms) for quillback rockfish, relative to the marginal mean of the data (vertical 
line). PPDs are based on 10,000 simulated data sets from model 13. 
 
 

 
Figure S41. Posterior predictive distributions (PPD) of the marginal mean weight [kg] by boat 
mode (light) for quillback rockfish, relative to the marginal mean of the data (vertical line). PPDs 
are based on 10,000 simulated data sets from model 13. 
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Figure S42. Estimated posterior means [kg] from model 13 (black open circles) and estimates 
from the borrowing algorithm (grey solid circles) versus observed arithmetic means for quillback 
rockfish. Each point represents a single year/month/port/mode combination (159 observed 
strata). Horizontal and vertical dashed lines are the arithmetic mean weight across all 
observations (grand mean). Solid line is the line of equality (1:1). 
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Figure S43. Comparison of observed weights [kg] for quillback rockfish to predicted mean 
weights from model 13 (upper panel) and estimates from the borrowing algorithm (lower panel). 
Solid black lines are 1:1 for reference. 
 
 


	Dick et al Model-Based Average Weights
	Figure captions for Dick et al
	Dick et al Supplementary Materials

